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PREFACE

This report describes an in-house effort monitored by Mr Carroll Butler of
the Aerodynamics Branch (FXA), Aeromechanics Division (FX), Air Force Armament
Laboratory, Eglin AF8, Florida, under project 25670320, "Weapons Internal
Carriage/Separations (WICS)." The work reported herein was performed during
the period 30 June to 5 September 1986 by Dr George Catalano from Louisiana
State University. The effort was sponsored by AFOSR under the Summer Research
Faculty Program.

This report is one portion of a planned number of efforts addressing the
internal carriage and separation of stores from high performance aircraft.

Dr Catalano would like to thank the Air Force Systems Command and the Air

Force Office of Scientific Research for sponsorship of the research. He would

also like to express appreciation to his sponsor, Mr Carroll Butler, Technical

Advisor, and Mr Steve Korn, Branch Chief, of the Aerodynamics Branch, Armament

b Laboratory for providing the environment that is a prerequisite for the search
of new ideas.

This report was edited and publiished under the auspices of the Air Force
Armament Laboratory (DOIR), Air Force Systems Command, United States Air Force,
Eglin Air Force Base, Florida.
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NOMENCLATURE

constant

aspect ratio (D/L)

cavity depth

complete elliptical integral of the second kind
incomplete elliptical integral of the second kind
cavity length

number of vortices

mean velocity components in the stream and cross-stream
direction

free stream velocity

angular component of velocity

radial component of velocity

cavity width

position of transformed cavity corner
first derivative of transformal function
second derivative of transformal function
wave number

integer

distance from the center of vortex
dimensionless time

turbulen’ fluctuation components
dimensionless Cartesian coordinates
complex variable in the physical coordinate system
circulation of vortices

dimensionless time step

transformed complex variable, wavelength

kinematic viscosity
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SECTION I
INTRODUCTION

1. OVERALL OBJECTIVE OF RESEARCH EFFORT

The overall objective of the research effort is a more precise under-
standing of turbulent flow past an embedded, rectangular cavity.

Flow past embedded cavities are examples of separated flows which are of
significant engineering interest. There is considerable progress to be made in
the understanding nf the Jdynami<s behavior of such flow fields. A weapons bay
exposed to the outer * uw 15 an example of the existence and importance of such
flow fields. The fiow “1e!d within the bay affects the initial behavior of the
mounted weapons at tne rruoial retease time. Also, coupling of the self-
sustaining osciilations present 1n some cavity flows with the resonant
frequencies of nearby aircraft structures could result in serious structural
damage. An additional example of the relevance of the flow configuration in
addition to a weapons bay can be seen in airborne open viewing ports which can
be required for various optical devices such as infrared telescope sensors, or
lasers. When exposed to the freestream flow, the open viewing ports act as
cavities which can result in unwanted internal vibrations generated by the
unsteady, turbulent pressure and velocity fields. Flow field spoilers have
been successfully used arhead of open viewing ports in order to acoustically
guiet an open-port cavity yet their application seems adhoc at best. Thus,
one desired outcome of the investigation is to formulate the open cavity flow
in such a manner as to enable the engineer the opportunity to estimate the
sensitivity of resultant turbulent field to an important initial condition,
i.e., the mean velocity profile at the point of separation.

A second desired outcome of the investigation is to determine the effects of
a finite width on the flow past an embeddad cavity. There is a serious shortage
of such experimental data at the present time.

A number of numerial and experimental investigation of 2-D flow past
cavities and backwaru facing steps have been reported. For low Reynolds number
flows, numerial studies by Kawagutti, Reference 1, Mills, Reference 2,

Burgraf, Reference 3, Pan and Acrivos, Reference 4, Nallaswamy and Prasad,
Reference 5, and Bozeman and Dalton, Reference 6, have been reported, though
frequently the free surface boundary condition had to be changed such that the
flow is induced by a top moving wall. Sarohia, Reference 7, experimentally
investigated laminar separation flow over axisymmetric rectangular cavities and
found that the depth-to-length ratio can be used to characterize cavity flow as
open or closed in an analogous manner as in the turbulent case.
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For the case of larger Reynolds numbers, Roshko, Reference 8, Tani, et.al.,
Reference 9, Sinha, et.al, Reference 10, and Rockwall and Kinsley, Reference 1l
experimetally studied boundary layer flows over embedded cavities with
concentrétion on the overall features of the flow such as velocity and surface
pressure distributions, skin friction variations, and interfacial stability.
Hankey and Shang (Reference 12) and Gatski et.al., Reference 13) numerically
studied the high speed shear flow driven cavity problem.
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SECTION 11
MATHEMATICAL AND NUMERICAL FORMULATION

A general framework for describing cavity flows and the resultant flow
oscillations is given by Rockwell and Naudascher (Reference 14). The fluid
dynamic oscillations which are primarily attributable to the instability of
the cavity shear layer are the focus of this investigation., These
oscillations can be traced from the initial disturbances and vortical
fluctuations in the cavity shear layer. The disturbances are then enhanced by
the feedback mechanism at the downstream edge of the cavity.

The mathematical approach taken here i< the development of a potential model
of the complete cavity flow. The flow separates at the leading edge of the
cavity, creating a highly vortical shear layer between the fluid within the
cavity and the outer free stream. The shear layer diffuses into the cavity,
eventually impinging upon the rear wall, and turning downwards creating a large
trapped vortex. This vortex which is fed energy by the shear layer interacts
with the interfacial region inducing a semiperiodic displacement of the shear
layer which in turn governs the rate at which vorticity is shed downstream.

The main tenet of the potential model is that the free shear layer, which
separates at the cavity leading edge, can be replaced by periodic insertion of
point vortices at or near the separation point. The discrete vortex approxima-
tion utilizes a Schwarz-Christoffel transformation to map the cavity geometry
onto the upper haif plane. The strength of the discrete vortices is determined
from the application of the Kutta condition at the leading edge with the zero
normal velocity at the walls satisfied by the insertion of image vortices.

The first representation of a continuous vortex sheet by discrete vortices
was presented by Rosenhead (Reference 15), with later improvements made by
Birkhoff and Fisher (Reference 16). The development and interaction of two
vortex layers was described by Abernathy and Kronauer (Reference 17) and
Moor (Reference 18). The first application of a discrete vortex representation
of a shear layer for flow around a bluff body was performed by Gerrard
(Reference 19), and later by Sarpkaya (Reference 20) and Laird (Reference 21)
for the case of flow around a circular cylinder.

An inviscid model of two dimensional vortex shedding behind a square-based
section was developed by Clements and Maull (Reference 22-24) and extended by
Hardin and Mason (Reference 25) to sque cavities and by Davies, et al. -
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(Reference 26) and Bradshaw, et al. (Reference 27) to jet flows. The
discrete vortex model developed by Clements (Reference 22) and Hardin (Reference
25) forms the basis of the model developed in this investigation.

DISCRETE VORTEX MODEL

The flow over the embedded cavity is modelled by a series of discrete
vortices superimposed onto irrotational inviscid flow. Consider a two dimen-
sional cavity of length L, and depth D with the assumption that for upstream and
for downstream from the cavity, the flow is uniform and parallel (Figure 1).

A Schwarz-Cristoffel transformation is used to map the cavity onto the
transformed » -plane. That is,

Z =€ [sin-! \)/sin-1 (1/a)1/6(1/22) (1)

where E /] and E (-) are the incomplete and complete elliptical integrals of the
second kind, respectively. After additional manipulation it can be shown that

D = (K(1-1/a2) - E(1 - 1/a2)/E(1/a?) (2)

where K(*) is the complete elliptical integral of the first kind using complex
variable theory and applying the boundary conditions as

Us Ug and V+ 0 ()

Iro ,

results in the irrotational velocity components in the [ -plane equal to

U - iV = Af'(2) (4)
where

Fr(z) = AE(1/a2) [02 - 1)/(2 - a1} (5)
and

A= Ug/a £(1/a%) (6)

In the real flow, the action of viscosity is to induce an additional force
which causes the flow to separate rather than turn the corner as in the
potential case. The shear layer which separates the outer potential flow from
the more quiescent fluid within the cavity is highly rotational and unstable
with a tendency to roll up into concentrated regions of high vorticity due to
the Kelvin Helmholtz 1nstability.
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Suppose that, at time t, there exists N vortices of strength Tj; located
at positions (Zj (j =1,2,...N). The velocity field will be the superposition of
that induced by the totality of vortices on to the cavity flow which results in:

: . N /1. N
U-xVI L =|A-T 7 i Y+ °© T
Z 7k [ om J=1(‘r-—r.) Zn =1 %, - A%
J#k k J jfk k j

[ )

(7)

N r. '
Hi ¢ ——L—)‘ G f (Zk
7 =1 (A7)

itk J
where the image vortices are included to satisfy the boundary condition of zero
velocity through the cavity walls, and Zx is the point of interest.

MODIFICATION BY ARTIFICIAL VISCOSITY

Significant irregularities which can occur in the velocity field arise when
the concentration of vortices increases in a particular flow reqion. These
irregularities seem to be caused when one point vortex's trajectory brings it
close to a second point vortex. The result is a rapid circling motion. In a
viscous fluid, the velocity field induced by a single vortex is diminished in
magnitude. Thus, a viscous vortex is used in place of the inviscid model, that
s

Va = T [l-exp<:ﬁg>] (8)

C Jar 4vt

Vp = 0 (9)
where V, and V. are the angular and radial velocity components. r is the

distance from the vortex center, and t is chosen such that a point vortex
results when t = 0. Upon substitu*ion into the cavity velocity field expression

results in:
s . N 2
U - TJ\Z = Zk = A -1 3: T: (] - exp <_ [-X -__A_J___] ))

2n =1 x-X vt 10)
Y r " .
e T3 (1~exp (-[\-xj*]2>) f'(Z)- i 4_5 f (zk) f'(7,)
2 i:l (\-\_J.T&T N _

This equation is not exact since it is not compatible with the Navier

Stokes equation due to its nonlinearity. For a sufficiently large N and a
suitable chosen value of the artificial viscosity, a more regqular pattern of
vortex motion results along with a smoother and more realistic velocity field.




MODIFICATION OF VORTICITY NEAR SEPARATION

Prandtl (Reference 29) has shown that the separation from an infinite
cylinder can be delayed or prevented by rotation of the cylinder such that the
tangential velocity is in the same direction as the outer flow. Catalano and
Viets (Reference 30) have found that a quasi-cylinder with counter flow rotation
can also have a significant beneficial effect in delaying separation. In both
cases the vorticity near the separation point is modified, diminished by
parallel rotation, amplified by counter rotation. In the introduction,
reference is made to the reduction of oscillations in cavities by insertion of
fences upstream of the cavity leading edge which modify the velocity profiie
near separation. Thus, there is a direct analogy between the effects of fences
and the effect of a rotating cylinder. To include the ability of the discrete
vortex model to incorporate the rotating cylinder effects, a Hankel transform is
used to solve the unsteady vorticity equation with the solution given as the
following Fourier-Bessel integral:

() 9y Or/ W] [1 - e (70 4 )
A

v - mf’[dc (NR) Y, (xr/ ) - ¥
% 02 (AR) + ¥
0

© NJO

(AR)

A detailed derivation is presented by Catalano and Shih (Reference 31).

BOUNDARY CONDITIONS

The image vortices in Equation (10) are used to satisfy the zero velocity
condition at the walls. Clements (Reference 24) and Hardin and Mason (Reference
25) suggested vortices which are closer than 0.015 to the cavity walls. This
procedure has been adopted in this investigation. C(lements (Reference 24)
commented that the removal of the vortices is equivalent to the viscous
dissipation of the vorticity, that is the no-slip condition creates high
frequency vortices near the boundary, which accelerates the dissipation of
energy close to the walls. The potential flow solution is then modified to
account for viscous effects.

NUMERICAL ERROR

The discrete vortex model approximates a sheet by a series of individual
points. The model is extremely sensitive to the time interval, between the
successive vortices shed at the leading edge. Hardin and Mason (Reference 25)
selected the dimensional time step, Ugat, such that 0.01 < Ujat < 0.3. This
criterion has been incorporated into the present work (Figure 2).
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SECTION III
EXPERIMENTIAL DESIGN AND PROCEDURE

L

A cavity model (Figure 3) with fixed depth, D, equal to 5 cm, fixed width,
W, equal to 5 cm and variable length, L, is mounted in a splitter plate 30 cm
wide by 56 cm long. The plate is carefully contoured to limit the disturbances
that result when the model is mounted in the test section of a subsonic tunnel
having dimensions 46 cm by 92 cm by 184 cm in length. The blockage is
calculated to be approximately 5 percent. The length which can be varied from
5 cm to 35 em is accomplished via sliding blocks. The tunnel free stream .
turbulence intensity is approximately 0.5 percent at a wind speed of 6m/sec.
The incoming flow condition is determined for the location close to the leading
edge of the cavity. Note that the cavity leading edge is 20 cm downstream
from the splitter plate leading edge, with the resulting Reynolds numbers
equal to Rey = 8 x 104, Recrit = 106, Reg= 5.5 x 103 and with a laminar .
upstream boundary layer. The boundary layer thickness is calculated tu be
approximately 1 cm. Wool tufts and oil film flow visualization are utilized
to observe the complicated three dimensional patterns within the cavity. The

S ARARARY

FARRERT I ] g

s

cavity bottom is replaced with optical-quality glass to permit line-of-sight N
for photography. A motor transmission oil with naptha and colored dyes is :
used as the streaking medium. -
Hot wire anemometry and a laser Doppler velocimeter (LDV) are used to

measure mean velocity and turbulent intensity profiles in the longitudinal and ”
normal directions. The LDV is a DISA single component, back scatter set-up ’
using a frequency tracker and a 7.5 nwatt helium-neon coaxial laser. Olive oil -
in conjunction with an agricultural fogger is used to provide light scatters o
with a diameter of 0.5 microns. ~4
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(b) FRONT VIEW

Figure 3. A Schematic Description of the Cavity Model Installed
at the Test Section of the Wind Tunnel
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SECTION IV
RESULTS AND DISCUSSION

1. FLOW PATTERN

The evidence of three dimensional flow and one effect of a finite width is
shown in Figure 4. The oil flow patterns on the cavity flow correspond to L/D =
2, 3, and 4. Note that as the L/D ratio increases, the parabolic velocity profile
becomes more pronounced. This is in accord with Maull and East who observed
that a wave flow pattern first appears when W/L = 9.0. For the present case
W/L = 1. The oil film results and woolen tuft behavior suggest the fluid
behavior in Figure 5 (a)-(b). Experimental data confirm these results though
the analytical model (Figure 6) fails to indicate the existence of secondary
rotational flow in the cavity corners.

2. MEAN VELOCITIES

Here, the nondimensionalized longitudinal, mean velocity, U/Upax is plotted
versus the nondimensionalized transverse location Y/D, where Upayx is the free
stream speed.

A comparison between the analytical model predictions and the experimentally
determined results is shown in Figure 7, for different downstream locations.
For these comparisons, the artificial viscosity is set equal to zero. Note
that while the agreement is reasonable with respect to location of the core of
the expected vortex (U/Upax = 0), there exists a consistent trend to exaggerate
the amplitude of the mean velocity within the cavity 1n both the downstream and
upstream locations. This would suggest that an introduction of a nonzero v, in
the vortex model would help alleviate the discrepancy. In fact, Figure 8
demonstrates the effect of 4 on the mean velocity profiles at 2 X/L = 0, and
establishes a possible source of error in Figure 7 to be the inviscid
assumption. The agreement between analytical predictions and experimental data
improves for all v 5> O.

The nondimensionalized, transverse, mean velocity, V/Upax, 1S plotted
versus y/D for several downstream locations in Figure 9. Once again the
analytical predictions exaggerate the strength of the vortex core. An increase
in the artificial viscosity does aid to a certain extent as in the longitudinal
case. The model does predict the correct behavior: a positive mean transverse
velocity then changes sign as the flow proceeds downstream,
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Figure 5a. Streamlines at the Cavity Bottom
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Figure 5b. Streamlines at the Cavity's Center Surface
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Recall that the experimental data is at the centerline of a 3-D flow field
while the model is based on a 2-D assumption.

One of the stated goals of the

investigation was to examine the effects of finite span.

present work to previous 2-D cavity results is shown in figure 10. Several
First, note that the center of the vortex trapped
Yo_p core) fOr the 3-0 case.

observations can be made.
within the cavity is lower (i.e., Yi_p Core <
Hence, the ratio of width to length, W/L, is equally as important as D/L in
Also, for the 3-D case, as W/L decreases from 0.5 to
0.25 the vortex center is pushed still farther into the cavity. Additionally,
the mean velocity gradient increases in magnitude within the cavity as does the

Characterizing the flow.

strength of the separation region.

3.

0.

TURBULENT INTENSITIES

tongitudinal turbulent intensities, (uz)i/Umax are plotted versus

transverse location, y/D, for three different downstream locations in Figure 11.
Note the downstream development with the turbulence first slightly increasing
from 2 X/L = -0.5 to 2 X/L = 0, and then significantly decreasing at 2 X/L =
This trend is also shown in the downstream development of the transverse
turbulent intensities (vz)ﬁ/Umax, which are shown in Figure 12. The data
suggests a gradual increase in turbulence as the flow proceeds from the leading
edge of the cavity towards the centerline with a more rap‘d decrease as the rear

5.

wall becomes nearer in proximity.

The experimental data from the present 3-D case are also compared to the
analytical model predictions and to previous 2-D investigations in Figiure 13, for
both the longitudinal and transverse cases.
between the 3-D data and the predictions.
higher than the infinite span case.

of the finite span.
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Note the reasonable agreement exists
However, both results are considerably
The reason for the differences may be found
in the use of laser velocimetry versus hot wire anemometry or be the conseguence
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SEETION V
CONCLUSIONS

A comparison between 2-D and 3-D Cavity experimental data has been
documented in the present investigation. In addition, an analytical model has
been developed and evaluated for application to 3-D cavity flows. The following
conclusions have been reached:

1. Flow visualization techniques indicate that as the ratio, L/D
increases for a fixed W/L, the parabolic shape of the mean
velocity profile becomes more pronouned.

2. The analytical model fails to predict secondary rotational flows
in the cavity corners in contradistinction to experimental evidence.

3. The analytical model predictions for the longitudinal and lateral
mean velocities are improved with the introduction of an artificial
viscosity, va, into the vortex model. This suggests the increased
importance of viscosity as the cavity width is decreased.

4, The central vortex core location is found to move deeper within the
cavity for a finite and fixed width as the length is increased.

5. The turbulent intensities in both the longitudinal and transvers
direction are several times higher at the centerline of the 3-D
cavity than for the 2-D case. The analytical model predictions and
experimental data corroborate this observation.
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SECTION VI
RE COMMENDATIONS

1. The analytical model based on the superposition of potential flow and a
viscous point vortex model has shown considerable promise in the prediction of
the centerline flow in a 3-D embedded cavity. The artificial viscosity concept
was demonstrated as a key device in improving the agreement even further. Much
work needs to be done in optimizing the value of the artificial viscosity and in
understanding its dependency on flow parameters.

2. The analytical model fails to predict the secondary and tertiary vortex-like
corner flows. This short coming is perhaps due to the adhoc assumptions concern-
ing the boundary layer. Work should be done to attempt to mcdel the boundary
layer perhaps by an integral technique and then match the boundary layer to the
outer cavity flow. This might provide insight into the viscosity dominated corner
regions of the flow field.

3. The predictions of mean velocities and turbulent intensities are merely the
first and second steps of the work to be accomplished. Several other parameters
should be calculated such as auto correlations of the fluctuating velocity field
which would provide insight into the development of the integral length scales and
the Taylor microscales. Of paramount interest would be the auto spectral density
functions which can be obtained via Fourier transforming the auto correlations.
The auto spectra would indicate the extent of structure in the turbulent flow.
This turbulent structure is important as it relates to the existence of self-
sustaining oscillations in the cavity.

4. Much work is needed to better understand the difference between two-
dimensional and three-dimensional cavity flows. The initial evidence presented
here suggests a radical difference between the two flows. The sensitivity of the
cavity to length/depth and length/width ratios must be carefully documented.
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